This type of filter applies a smoothing filter adaptively over the
image. For each pixel the variance of the surrounding hexagon values
is calculated, and the amount of smoothing is made inversely propor-
tional to it. The idea is that if the variance is small then it is due
to noise in the image, while if the variance is large, it is because of
"wanted" image features. As usual the radius parameter controls the
effective radius, but it probably advisable to leave the radius between
0.8 and 1.0 for the variance calculation to be meaningful. The alpha
parameter sets the noise threshold, over which less smoothing will be
done. This means that small values of alpha will give the most subtle
filtering effect, while large values will tend to smooth all parts of
the image. You could start with values like alpha = 1.2, radius = 1.0
and try increasing or decreasing the alpha parameter to get the desired
effect. This type of filter is best for filtering out dithering noise
in both bitmap and color images.
Edge enhancement. (-0.1 >= alpha >= -0.9)
This is the opposite type of filter to the smoothing filter. It
enhances edges. The alpha parameter controls the amount of edge
enhancement, from subtle (-0.1) to blatant (-0.9). The radius parameter
controls the effective radius as usual, but useful values are between
0.5 and 0.9. Try starting with values of alpha = 0.3, radius = 0.8
Combination use.
The various modes of pnmnlfilt can be used one after the other to get
the desired result. For instance to turn a monochrome dithered image
into a grayscale image you could try one or two passes of the smoothing
filter, followed by a pass of the optimal estimation filter, then some
subtle edge enhancement. Note that using edge enhancement is only
likely to be useful after one of the non-linear filters (alpha trimmed
mean or optimal estimation filter), as edge enhancement is the direct
opposite of smoothing.
For reducing color quantization noise in images (ie. turning .gif files
back into 24 bit files) you could try a pass of the optimal estimation
filter (alpha 1.2, radius 1.0), a pass of the median filter (alpha 0.5,
radius 0.55), and possibly a pass of the edge enhancement filter. Sev-
eral passes of the optimal estimation filter with declining alpha val-
ues are more effective than a single pass with a large alpha value. As
usual, there is a tradeoff between filtering effectiveness and loosing
detail. Experimentation is encouraged.
References:
The alpha-trimmed mean filter is based on the description in IEEE CG&A
May 1990 Page 23 by Mark E. Lee and Richard A. Redner, and has been
enhanced to allow continuous alpha adjustment.
The optimal estimation filter is taken from an article "Converting
Dithered Images Back to Gray Scale" by Allen Stenger, Dr Dobb's Jour-
nal, November 1992, and this article references "Digital Image Enhance-
ment and Noise Filtering by Use of Local Statistics", Jong-Sen Lee,
IEEE Transactions on Pattern Analysis and Machine Intelligence, March
1980.
The edge enhancement details are from pgmenhance(1), which is taken
from Philip R. Thompson's "xim" program, which in turn took it from
section 6 of "Digital Halftones by Dot Diffusion", D. E. Knuth, ACM
Transaction on Graphics Vol. 6, No. 4, October 1987, which in turn got
it from two 1976 papers by J. F. Jarvis et. al.
SEE ALSO
pgmenhance(1), pnmconvol(1), pnm(5)
BUGS
Integers and tables may overflow if PPM_MAXMAXVAL is greater than 255.
AUTHOR
Graeme W. Gill graeme@labtam.oz.au
5 February 1993 pnmnlfilt(1)
Man(1) output converted with
man2html